Controlled Dissipation with Superconducting Qubits

This post was sponsored by Tabor Electronics. To keep up to date with Tabor products and applications, join their community on LinkedIn and sign up for their newsletter. Authors: P.M. Harrington, M. Naghiloo, D. Tan, K.W. Murch First Author’s Primary Affiliation: Department of Physics, Washington University, Saint Louis, Missouri 63130, USA Manuscript: Published in Physical Review A Introduction QuantumContinue reading “Controlled Dissipation with Superconducting Qubits”

Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics

Authors: Uwe von Lüpke, Yu Yang, Marius Bild, Laurent Michaud, Matteo Fadel, and Yiwen Chu First Author’s Primary Affiliation: Department of Physics, ETH Zurich, Zurich, Switzerland Manuscript: Published in Nature Physics Introduction Superconducting qubits are a promising candidate for functional quantum computation as well as investigating fundamental physics of composite quantum systems where superconducting qubitsContinue reading “Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics”

Quantum Communication with itinerant surface acoustic wave phonons

Authors: E. Dumur, K.J. Satzinger, G.A. Peairs, M-H. Chou, A. Bienfait, H.-S. Chang, C.R. Conner, J. Grebel, R.G. Povey, Y.P. Zhong, A.N. Cleland First Author’s Primary Affiliation: Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA Manuscript: Published in NPJ Quantum Information Introduction Superconducting qubits are among the state of the artContinue reading “Quantum Communication with itinerant surface acoustic wave phonons”